Noncommutative geometry and Painlevé equations
نویسندگان
چکیده
منابع مشابه
2 3 A pr 2 01 4 Noncommutative geometry and Painlevé equations Andrei Okounkov and Eric
We construct the elliptic Painlevé equation and its higher dimensional analogs as the action of line bundles on 1-dimensional sheaves on noncommutative surfaces.
متن کاملGalois Theory and Painlevé Equations
— The paper consists of two parts. In the first part, we explain an excellent idea, due to mathematicians of the 19-th century, of naturally developing classical Galois theory of algebraic equations to an infinite dimensional Galois theory of nonlinear differential equations. We show with an instructive example how we can realize the idea of the 19-th century in a rigorous framework. In the sec...
متن کاملStudies on the Painlevé equations V , third Painlevé
By means of geometrical classification ([22]) of space of initial conditions, it is natural to consider the three types, PIII(D6), PIII(D7) and PIII(D8), for the third Painlevé equation. The fourth article of the series of papers [17] on the Painlevé equations is concerned with PIII(D6), generic type of the equation. The other two types, PIII(D7) and PIII(D8) are obtained as degeneration from P...
متن کاملNoncommutative Geometry and Quantization
The purpose of these lectures is to survey several aspects of noncommutative geometry, with emphasis on its applicability to particle physics and quantum field theory. By now, it is a commonplace statement that spacetime at short length —or high energy— scales is not the Cartesian continuum of macroscopic experience, and that older methods of working with functions on manifolds must be rethough...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebra & Number Theory
سال: 2015
ISSN: 1944-7833,1937-0652
DOI: 10.2140/ant.2015.9.1363